来源:中国数据分析行业网 | 时间:2016-07-12 | 作者:数据委
从大数据诞生之时,精准医疗就随之而热。人类期待着通过大数据推动医疗科学的进步,更多的克服医疗学术的难关。事实上,也如大家所愿,大数据的确为医疗领域带来了很多新的发展。今天,想要和大家分享的,就是数据可视化对医疗科学有所贡献的几个案例。
John Snow 霍乱地图1854年的夏天,浓重的恶臭笼罩着伦敦。瘴气从城市的屠宰场,污水池,工厂和无数其它污秽处飘来, 在大街小巷肆意弥漫。这时,恶性霍乱暴发,突袭宽街(Broad Street,位于伦敦中心——译者注),许多人认为这污秽的空气是罪魁祸首 。然而麻醉师约翰·斯诺(John Snow)并不这样想,他认为污水是传染源。他绘制了一张地图,显示出病例地点以及最接近的水泵,他用此图说服官员,拆去水泵的手柄(居民无法在此取水),后来传染病就消退了。虽然实际的故事远比这要复杂的多,但却成为了一个经典的例子,用以说明视觉呈现在帮助追踪和阻止致命性流行病方面发挥的能力。
用统计方法分析大量的不记名电子病历为推进医学研究提供了巨大动力。 阿克曼说:“所有医疗记录埋藏着巨大的财富。”但是只有当医疗记录的 相互操作性大幅提高,人们才有可能意识到它们的真正价值。
在他对生命线(LifeLines,病历可视化技术——译者注)的描述中提到, 一个互动式的可视化工具能够让医疗工作者有兴趣去挖掘多重医疗记录背后的数据模型和趋势,马里兰大学人机交互实验室的创始人本·施奈德曼(Ben Shneiderman)写道,只有当访问医疗信息的用户界面(UIs)设计得好, 所有为解决技术问题和政策挑战的努力才会获得成功。“长长的滚动列表,笨拙的搜索,繁琐的菜单和冗长的对话框会导致失去用户。”
然而,他也认为“精心的设计会使得快速访问关键数据成为可能,而总结、过滤并呈现大量信息的技术则正在被提升。通常来讲,当医生和其他医护人员刚开始接触信息可视化系统就很感兴趣。可是,他们需要花一点时间和改变思考方式来适应新的系统。一旦他们适应了,便会对可能性倍感兴奋。”
他一直在开发一种称为Rxplore的可视化工具,用来帮助服用多种药物的患者减少药物的副作用或发生交叉反应的风险。在繁忙的医院里,分秒必争。评估单一药物潜在影响所需要的时间都相当紧张。对于同时服用10 或15 种甚至更多种药物的病人,忙碌的医务工作者更难分析药物的副作用,交叉相互作用以及禁忌情况。杜克说,“我负责照顾很多老年患者,他们自己很难追踪他们自己所服用的所有药物。这可以变得很复杂。”然而这个问题并非老年患者独有,早产儿和患有慢性疾病的儿童,他们的医疗方案里也有可能涉及大量的药物。
疾病以及灾难预警系统InSTEDD(InSTEDD, Innovative Support to Emergencies, Diseases and Disasters,中文大意为危机、疾病以及灾难创意预警系统——译者注)的Nicolas di Tada 说“疾病无政治边界”。 InSTEDD是一个非政府组织,致力于创造性地解决全球健康问题,如流感和生物恐怖主义。InSTEDD为公众健康、应急反应和环境问题提供技术工具和平台。此外,在其它方面,di Tada说他们目前正在东南亚与当地的公共医疗工作者一道,为疾病早期诊断开发可视化方法。
InSTEDD借助数据可视化来确定报道的病例数是否属实。Di Tada指出:“我们正在努力想办法来解释:临近的不同城市报告了非常不同的疾病暴发的数字。”例如:“为什么一个地区疟疾的发病率比附近另一个地区高得多?”Di Tada说,按照约翰?斯诺(伦敦霍乱绘图者)的传统理论,病例在地图上的可视化可以提供有关疫情源头的线索,以及其地理性的联系。然而,寻找疫情源头或暴发点却是一项艰巨的挑战。他认为,关键是要能够看到问题是否出在一个城市的实际报告中,或者问题确实是由一种特定的水或食物的供应造成的。
约翰·布朗斯坦(John Brownstein)和哈佛 – 麻省理工学院卫生科学与技术部(Harvard-MIT Division of Health Sciences and Technology) 参与了健康地图项目,该项目为传染病暴发提供了全球视图。他说,学术界中,人们对于融合地理信息系统(Geospatial Information System,简称GIS——译者注)与公共卫生数据并将其可视化的兴趣和训练逐渐增加。“健康地图中真正的一个问题是,我们试图在一张图上绘制不同尺度的东西。”他补充说:“我们如何让人们专注于数据最显著的方面,并平衡不同技术水平用户群对于数据呈现的需求,这中间有很多取舍。”
他被邀请审查一些医院的数据,当他在Spotfire(一个数据可视化应用程序)中挂上数据时,他发现有三名病人被列为999岁。如果没发现,这些错误可能已经扭曲了从这些数据中得到的信息。
施奈德曼说:“当进行合适的可视化时,数据集的问题就会‘蹦出来’ 。如果单纯是为了清洗数据, 是值得进行数据可视化的。”
数据资源很重要谷歌首席健康策略师罗尼·蔡格尔(Roni Zeiger)说,“得到数据中信息的启发和引导是非常重要的。”他举了个例子说,谷歌流感趋势的案例研究中一个简单的图形捕捉到了一个“非常有趣的故事”。通过分析与流感相关的搜索请求数据,谷歌追踪疾病的传播能力与采用传统的疾病监测方法的疾病控制中心和预防中心(CDC)一样有效,且速度更快。 “因为与CDC收集临床数据相比,我们更容易收集搜索数据,在时间上有一到两周的优势。”从简单到复杂,或许可视化可以帮助评估、解释、并显示使用各种抽象模型进行数据挖掘的有效性。
来源:36大数据